Mechanisms underlying the long-term behavioral effects of traumatic experience in rats: the role of serotonin/noradrenaline balance and NMDA receptors.
نویسندگان
چکیده
Traumatic stressors induce long-lasting changes in behavior. It is believed that all three glutamatergic, serotonergic and noradrenergic neurotransmission play a role in the development of such behavioral changes, but their relative importance and relationship is poorly understood. We have shown previously that a single exposure of rats to electric shocks induces social avoidance for about 10 days. Here we assessed social avoidance 24 h after shock exposure in rats with chemically lesioned serotonergic and noradrenergic neurons. The effects of the NMDA receptor blocker MK-801 were also studied. When the serotonin/noradrenaline balance was shifted towards serotonergic dominance via chemical lesions, the behavioral dysfunction was markedly attenuated. The disruption of serotonergic neurotransmission (that lead to noradrenergic dominance) significantly increased the behavioral deficit. Shock responding was not secondary to lesion-induced differences in social behavior. Noteworthy, the brain noradrenaline/serotonin ratio correlated negatively with shock-induced social avoidance, suggesting that the ratio rather than absolute levels are important in this respect. In line with this assumption, double lesions had minor effects on social avoidance, suggesting that these monoaminergic systems modulate, but do not mediate the behavioral deficit. The blockade of NMDA receptors abolished the development of stress-induced social avoidance both when applied before shocks and when applied before behavioral testing. We confirmed that the long-term behavioral effects of traumatic experience result from glutamatergic activation, the effects of which are mediated by NMDA receptors. The development of the behavioral deficit is modulated by the balance between serotonergic and noradrenergic neurotransmission, possibly via effects on shock-induced glutamatergic activation.
منابع مشابه
EFFECTS OF CATECHOLAMINES ON DOPAMINE AND SEROTONIN SYNTHESIS IN RAT BRAIN STRIATAL SYNAPTOSOMES: THE ROLE OF PRESYNAPTIC RECEPTORS AND THE SYNAPTOSOMAL REUPTAKE MECHANISM.
The regulation of dopamine and serotonin synthesis in rat brain striatal synaptosomes has been studied using HPLC methods. Noradrenaline was shown to markedly inhibit both the synthesis of dopamine and serotonin. The response of the synaptosomes to the concentrations of noradrenaline appeared to be biphasic, a very effective inhibition occurring at low concentrations (1-5 µm) and a relativ...
متن کاملRole of NMDA receptors and voltage-dependent calcium channels in augmenting long-term potentiation of the CA1 area in morphine-dependent rats
The involvement of NMDA receptors and voltage-dependent calcium channels in augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-burst tetanic simulation. The amplitude of the population spike and its delay were measured as indices of increase in postsynaptic excitabi...
متن کاملCentral mineralocorticoid receptors mediate impairing effects of corticosterone on memory retrieval in rats
Introduction: Previous studies have indicated that stress levels of glucocorticoid hormones induce impairment of long term memory retrieval, but the underlying mechanisms (genomic or non-genomic) are not clear. To clarify this issue, we investigated the involvement of brain corticosteroid receptors and protein synthesis in the glucocorticoid-induced impairment of memory retrieval. Methods: 140 ...
متن کاملAssessment of the role of NMDA receptors located in hippocampal CA1 area on the effects of oral morphine dependency on spatial learning and memory in rat
Introduction: It has been reported that oral morphine dependency facilitated formation of spatial learning and memory. In the present study the role of NMDA receptors located in hippocampal CA1 area of morphine dependent rats was studied. Methods: Male rats were divided into 4 groups. Two cannulae were stereotaxically implanted bilaterally into the hippocampal CA1 area. After 5 days recover...
متن کاملP6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research bulletin
دوره 71 4 شماره
صفحات -
تاریخ انتشار 2007